

Revisiting the repetitive sequence composition in two genome assemblies of Pacific oyster, *Crassostrea gigas*

Weidong Bao¹, Acacia Alcivar-Warren^{2,3}

Genetics Information Research Institute (GIRI), 20380 Town Center Lane, Suite 240, Cupertino, CA 95014, USA weidong@girinst.org
FUCOBI Foundation, Quito, Ecuador, www.fucobi.org

3. Environmental Genomics Inc., P. O. Box 196, Southborough, MA 01772, USA environmentalgenomics.warren@gmail.com

Table 1. Repetitive component in the genome of *Crassostrea* gigas isolate BHY1A (GCA_005518195.2)

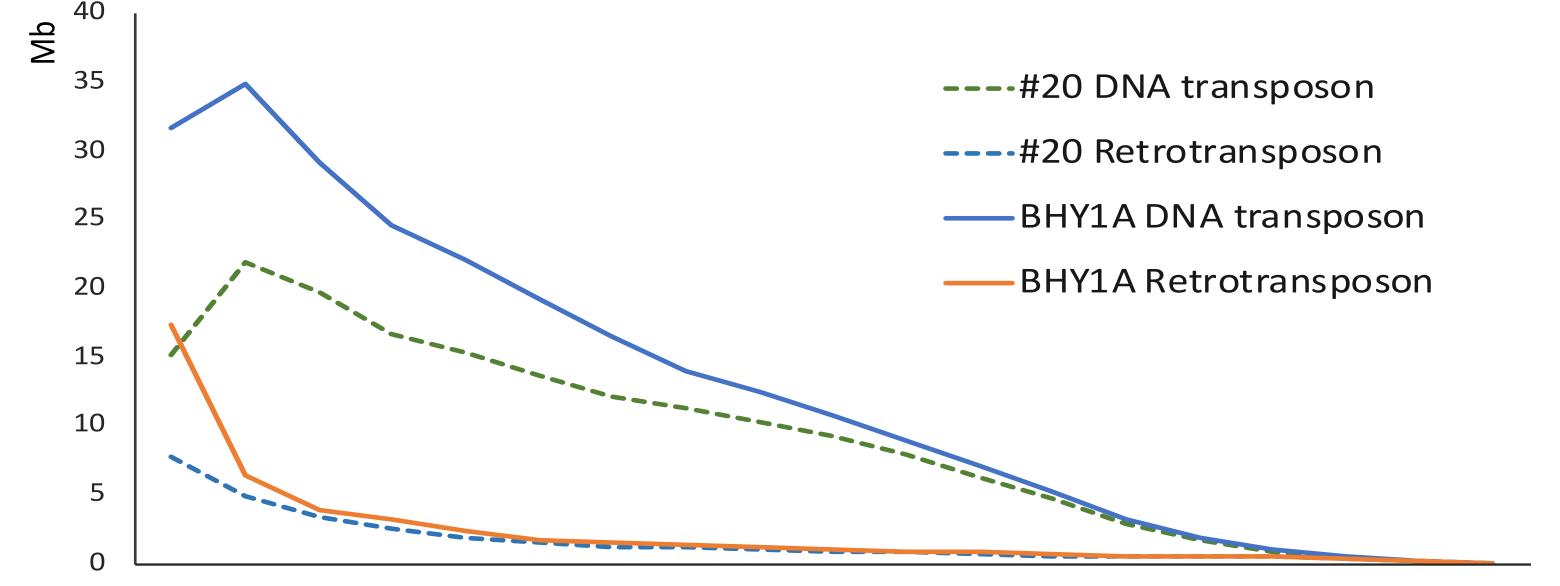
Class & Superfamily	Fami (auton	ly No. omous)	Copy No.	Genome (% 587Mb)
DNA Transposon				
Mariner/Tc1	103	(55)	15,724	2.00
Helitron	159	(23)	32,020	14.29
Crypton	97	(35)	20,138	3.16
Kolobok	69	(40)	9,583	2.21
ISL2EU	69	(48)	5,765	1.48
hAT	54	(16)	5,871	0.85
Academ	36	(22)	2,383	
Harbinger	39	(22)	1,987	
P	31	(13)	1,213	
Zator		(7)	1,163	
IS3EU	18	(6)	1,034	
EnSpm/CACTA	20	(8)	379	
MuDR	20	(13)	319	
piggyBac		(7)	146	
Polinton		(11)	47	
Sola	21	(18)	151	
Ginger2/TDD	6	(5)	408	
Dada	2	(2)	9	
Merlin		(2)	8	
Unclassified	321		60,028	11.70
Subtotal	1115		158,408	40.78
LTR retrotransposon				
Gypsy	434		8,787	2.70
BEL	100		1,319	
Copia	6		68	
Unclassified	12		1,206	
DIRS	83		750	
Subtotal	635		12,131	4.33
Non-LTR retrotansposon				
Tx1	66		1,129	
RTEX	60		998	
CR1	31		462	
RTE	9		90	
L2	6		56	
Proto2	3		32	
R2	1		4	
Penelope	21		831	
SINE/tRNA	4		1,145	
Subtotal	201		4,750	3.41
Unclassified repeats	48		3,284	0.81
Tandem & Simple repeat				1.72 *

• Pacific oyster genome is **highly enriched** in different types of repeats. Consensus or representative sequences of **1999** families of transposons, **48** types of unclassified elements, and several other of satellite sequenes and multicopy genes (Table 1) were reconstructed and manually curated from the two genome assemblies of *Crassostrea gigas*: isolate BHY1A (GCA_005518195.2, 587Mb) and strain **05x7-T-G4-1.051#20** (GCA_000297895.2, 564 Mb).

• At least 51.6% of the BHY1A genome are repetitive sequence (Table 1), exceeding the previous figure (48.32% ^[1]). ~80% repetitive sequence is consist of a large variety of DNA transposons. Helitron is the major type of DNA transposon (27.7% of the total repeats). LTR retrotransposons and Non-LTR retrotransposons account for only 8.4% and 6.6%, respectively.

• A large portion of the transposons are **highly active** or in the near past (Figure 1), which may be the major cause of the highly **pholymorphism** of oyster genomes.

 ~73% of tandem repeats and/or simple repeats are located wihin various DNA transposons (Table 1)


• Except for a few families (Table 2), there is **no major differences**, with regard to the types of repeats and their relative abundance, between the two oyster genomes. Nevertheless, a **slightly more TEs** were detected in the larger **BHY1A** genome (Figure 1).

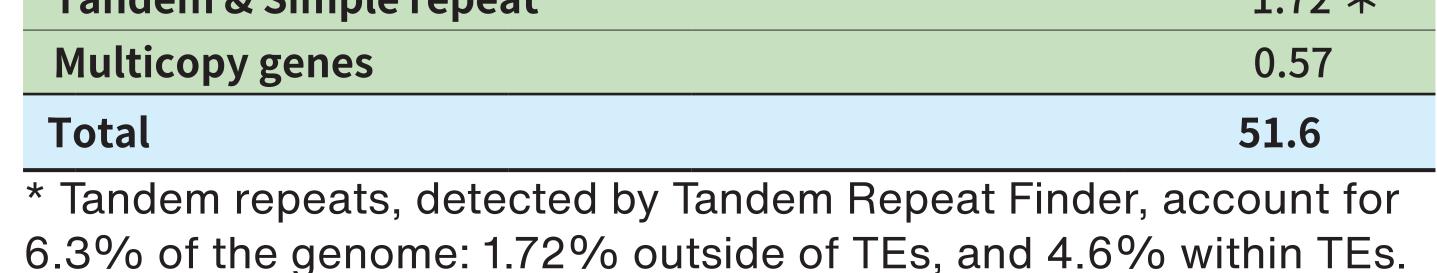

• The predominance of highly active DNA transposons inhibit, to some extent, the activity of retrotransposons by frequent insertion into the latter sequence, and can frequently generate **haphazard genomic duplication**, estimated to account for another 1-2% of the genome.

Table 2. A few families constrast in copy numbers in oyster BHY1A (GCA_005518195.2) and 05x7-T-G4-1.051#20 (GCA_000297895.2)

Family	BHY1A	05x7-T-G4-1.051#20
Academ-6_CGi	14	2
AcademH-11_CGi	10	1
CryptonV-4_CGi	0	1
DNA-30_CGi	58	4
BEL-1_CGi-I	9	2

Length (Mb) vs Divergency (2X, %)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 1. Cumulative lengthes of DNA transposons or RNA retrotransposons fragment vs the sequence divergence to the respective family consensus.

1. Wang, X. et al. Nanopore Sequencing and De Novo Assembly of a Black-Shelled Pacific Oyster (Crassostrea gigas) Genome. Front Genet 2019, 10, 1211.