TRANSPOSABLE ELEMENT-LIKE REPEATS IN ALLERGY CAUSING GENES ISOLATED FROM SPF Litopaneaus vannamei POSTLARVAE EXPOSED TO 1 PPM OF CADMIUM — DEVELOPMENT OF ALLERGEN EST-SSRs FOR LINKAGE MAPPING

Alexandra Bowen²; Jacqueline Presedo², Laura Hake², Acacia Alcivar-Warren¹⁻²

¹Biology Department, Boston College, Chestnut Hill, MA 02467 USA,

²Environmental Genomics, Inc., Southborough MA 01772,

³FUCOBI (Fundación para la Conservación de Biodiversidad Acuática y Terrestre de Ecuador), Guayaquil, Ecuador

E-mail: environmentalgenomics.warren@gmail.com

Litopenaeus vannamei

- Shrimp is the favorite seafood of Americans.
- Most shrimp is imported, creating a yearly \$4.5 billion US trade deficit.
- L. vannamei is the most widely cultured species around the world, and the industry is impacted by viral diseases.
- L. vannamei bioaccumulates cadmium (Keating et al. 2007)
- A linkage map (ShrimpMap2) is being constructed to identify genes or Quantitative Trait Loci (QTL) associated with tolerance/resistance of shrimp to metals and persistent organic pollutants (POPs).

Shrimp allergies

- The number of people with shrimp allergies in the US has increased in the past 20 years, and most shrimp consumed by Americans is imported.
- Availability of specific pathogen-free (SPF) L. vannamei, the most widely farmed shrimp species around the world, has helped to control viral diseases and promote aquaculture both in the US and abroad.

Cadmium in L. vannamei

- 18 metals detected in wild shrimp from Latin America.
- Cadmium (Cd) is the metal of concern.
- Cd, present in crude oil, has negative health effects in most living organisms
- Cd accumulates in testes, prostate, renal epithelial cells, & is linked to:
 - kidney damage
 - prostate cancer
 - obesity and diabetes
 - learning disabilities
 - may affect immune & allergic responses

(Henry & Alcivar-Warren, 2004)

SPF shrimp bioaccumulate cadmium

Cd levels increased 16-fold in Kona Line broodstock maintained in near zero-exchange recirculation system compared to a flow-through system.

~3,000 allergy-causing genes isolated from TSV-challenged SPF *L. vannamei* juveniles

- No homology
- Homology to ESTs of unknown function
- Homology to hypothetical, unnamed, predicted or unknown proteins
- Ribosomal proteins
- ☐ Cytoskeleton mRNAs
- Homeostasis / stress / immune function
- Mitochondrial genes
- Translational regulation

From Alcivar et al. 2011.

*known shrimp allergens

- Actin, myosin heavy chain, troponin I-C, tubulin,
- Tropomyosin, AK, MLC, SCP*
- Translationally controlled tumor protein (<u>TCTP</u>, or fortilin)
- Laminin receptor
- Chitinase, zinc proteinase
- heat shock protein 70
- antiviral protein hemocyanin,
- c-type lectins (PmAV & Kupffer cell receptor-like)
- 11.5 kDa antimicrobial peptide
- guanine nucleotide binding protein (rho pathway)
- nucleoside diphosphate kinase
- endoplasmic reticulum Ca2++
- 16s rRNA, COI, COII
- 60S, 40S ribosomal proteins, 28s, 18S, translation elongation & initiation factors
- ATPase, preamylase

Shrimp Allergens

Tropomyosin (TM)

is involved in muscle contraction.
along with **troponins**, it associates with the actin filaments and regulates actin mechanics is an **actin-binding** protein is regulated by the influx of **calcium ions**

is a member of the phosphagen kinase family catalyzes the reversible transfer of a high-energy phosphate from the phosphagen arginine phosphate to ADP to form ATP.

Myosin light chain (MLC)

Smaller subunits of myosin that bind near the head groups of myosin heavy chains

Involved in muscle contraction

Sarcoplasmic calcium-binding protein (SCP)

is believed to function as the invertebrate equivalent of vertebrate parvalbumin, namely to "buffer" cytosolic Ca2+

There are ~4,000 allergen-related ESTs in the UniGene database – most are from SPF shrimp

Tropomyosin,	Arginine kinase,	Myosin Light Chain,	Sarcoplasmic calcium-binding
Lit v 1	AK Lit v 2	Lit v 3	protein, SCP Lit v 4
Tropomyosin Lva.854: 80 seqs	Arginine kinase Lva.544: 984 seqs	Transcribed locus, moderately similar to NP_511049 myosin light chain cytoplasmic [D. melanogaster] Lva.1756: 183 seqs	Sarcoplasmic calcium-binding protein Lva. 2178: 644 seqs
		Transcribed locus, weakly similar to NP_001091813.1 myosin regulatory light chain 2 [Bombyx mori] Lva.1302: 906	Transcribed locus, weakly similar to XP_967547.1 similar to AGAP007963-PA [T.castaneum] Lva.20603: 21
		Transcribed locus, moderately similar to XP_976209.1 similar to myosin 1 light chain isoform 2 [Tribolium castaneum]. Lva.1350: 960	
		Lit v 3 allergen myosin light chain Lva.12166: 3 seqs **[2 are chimeric, with portions of both MLC2 & hypothetical protein]	
		Transcribed locus, weakly similar to NP_524586.1 myosin light chain 2, isoform A [D. melanogaster] Lva.6500: 20	
		Transcribed locus, weakly similar to XP_393544.3 PREDICTED: myosin light chain alkali-like isoform 4 [Apis mellifera] Lva.22925: 3	
		Transcribed locus, weakly similar to XP_001848910.1 myosin light chain kinase [Culex quinquefasciatus] Lva.12264: 8	

Seafood consumption as a factor in allergic predisposition?

Transposable Elements in shrimp

- Differential expression of TEs in response to viruses and other environmental factors has been reported in *L. vannamei*, *L. stylirostris* (Hizer, 2007) and *P. monodon* (de la Vega, 2006; Tang & Lightner, 2006).
- The reverse transcriptase-like (RT-like) non-LTR retrotransposon has been identified in *P. monodon* carrying non-infectious sequences of IHHNV inserted in the genome (Tang & Lightner, 2006), or IHHNV-infected *L. stylirostris* (Hizer, 2007).
- Remnants of TE repeats have been identified in SPF L. vannamei challenged with TSV and WWSV (Alcivar-Warren, 2009; Das, 2009) or exposed to Cd (Keating, 2007).
- It is possible that TEs increase the expression of allergens which are then
 are perceived as "foreign antigens" by hypersensitive people, a hypothesis
 that merits testing.

Why study Transposable Elements?

Because pollutants increase retrotransposon activity, which in turn affect fitness and disease susceptibility

LINE-1 non-LTR retrotransposon activity is induced by cadmium, mercury and nickel at very low levels, ppb (Kane et al. 2005)

Hypothesis

Environmental stressors and viruses cause induction of transposable element activity, which cause host mutations

Is RTE-like, or LINE-1, or other non-LTR retrotransposons involved in virus infectivity, disease susceptibility?

Transposable element (TE)-like repeats are present in the shrimp genome

	MLC - Lit v 3	C
	Transcribed locus, moderately similar to NP_511049 myosin light chainn cytoplasmic [D. melanogaster] Lva.1756: 183 seqs	DN LTF LIN SIN Un
TE-repeats in	Transcribed locus, weakly similar to NP_001091813.1 myosin regulatory light chain 2 [Bombyx mori] Lva.1302: 906	DN LTF LIN SIN Un
myosin light chain-related	Transcribed locus, moderately similar to XP_976209.1 similar to myosin 1 light chain isoform 2 [Tribolium castaneum] . Lva.1350: 960	DN LTF LIN SIN Un
ESTs	Lit v 3 allergen myosin light chain Lva.12166: 3 seqs **[2 are chimeric, with portions of MLC2 & hypothetical protein]	LIN
	Transcribed locus, weakly similar to NP_524586.1 myosin light chain 2, isoform A [D. melanogaster] Lva.6500: 20	DN LTF LIN Un
	Transcribed locus, weakly similar to XP_393544.3 PREDICTED: myosin light chain alkali-like isoform 4 [Apis mellifera] Lva.22925: 3	LTF LIN Un
	Transcribed locus, weakly similar to XP_001848910.1 myosin light chain kinase [Culex quinquefasciatus] Lva.12264: 8	DN LTF Un
	Transcribed locus, weakly similar to XP_393371.3 PREDICTED: myosin regulatory light chain 2 [Apis mellifera] Lva.23243: 3	LTF

	MLC - Lit v 3	Classification statistics using TEclass		
		soft	ware	
		All ESTs	Control (Cd-PL42)	
	Transcribed locus, moderately similar to NP_511049 myosin light chainn cytoplasmic [D. melanogaster] Lva.1756: 183 seqs	DNA transposons: 1 LTRs: 52 LINEs: 65 SINEs: 1 Unclear: 64		
Spirit III	Transcribed locus, weakly similar to NP_001091813.1 myosin regulatory light chain 2 [Bombyx mori] Lva.1302: 906	DNA transposons: 35 LTRs: 508 LINEs: 166 SINEs: 4 Unclear: 193	0 (1) 1 (3) 0 (4) 0 (0) 6 (0)	
ANAMES DESIGNATION	Transcribed locus, moderately similar to XP_976209.1 similar to myosin 1 light chain isoform 2 [Tribolium castaneum] . Lva.1350: 960	DNA transposons: 62 LTRs: 168 LINEs: 324 SINEs: 19 Unclear: 387	0 (0) 1 (0) 1 (3) 0 (0) 3 (1)	
Section 1995	Lit v 3 allergen myosin light chain Lva.12166: 3 seqs **[2 are chimeric, with portions of MLC2 & hypothetical protein]	LINEs: 3		
Control of the second	Transcribed locus, weakly similar to NP_524586.1 myosin light chain 2, isoform A [D. melanogaster] Lva.6500: 20	DNA transposons: 4 LTRs: 10 LINEs: 1 Unclear: 5		
AND DESIGNATION	Transcribed locus, weakly similar to XP_393544.3 PREDICTED: myosin light chain alkali-like isoform 4 [Apis mellifera] Lva.22925: 3	LTRs: 1 LINEs: 1 Unclear: 1		
PART NAME OF	Transcribed locus, weakly similar to XP_001848910.1 myosin light chain kinase [Culex quinquefasciatus] Lva.12264: 8	DNA transposons: 1 LTRs: 1 Unclear: 6		
	Transcribed locus, weakly similar to XP_393371.3 PREDICTED: myosin regulatory light chain 2 [Apis mellifera] Lva.23243: 3	LTRs: 2 LINEs: 1		

Cadmium (Cd)

- No information on the potential risk of SPF shrimp on increased allergen expression has been reported.
- The toxic metal cadmium (Cd) is an important environmental pollutant, a carcinogen, a metallohormone, and an endocrine disruptor.
- Cd accumulates in testes, prostate, renal epithelial cells and liver, binds to DNA, and may cause heritable mutations.
- Chronic, sublethal Cd levels may be harmful to human health.
- Cd increases oxidative stress
- Cd induces the expression of transposable elements (TEs) such as LINE non-LTR retrotransposons
- may play a role in epidemics of diabetes worldwide, and exacerbates allergic reactions.
- Cd accumulates in the body of *L. vannamei* in proportion to environmental concentrations.

Cadmium (Cd), cont.

• Cd levels are 2-3X higher in cephalothorax (C) than abdominal segments (AS) of *L. vannamei* from Ecuador and Honduras and *Penaeus monodon* of Philippines, and may impact health of people that consume them.

Cadmium (Cd)

- Baseline expression data on the potential effects of Cd on shrimp health and growth suggested a complex interaction between environmental conditions and host genetic background.
- To begin to understand the molecular mechanisms involved in the increased prevalence of shrimp allergies, basic knowledge of shrimp genome structure is needed.

Objectives

- To determine if the number of allergen genes is increased after Cd exposure
- To characterize the TE-like repeats in shrimp allergens, and
- To develop EST-SSRs for mapping of shrimp allergens.

Experimental approach

- Specific Pathogen Free (SPF) L.
 vannamei postlarvae (PL23) were
 obtained from the Kona Line of
 Oceanic Institute (OI), Kona, HI
- 11 day acclimation in Aquaneering (Ahab) system
- Artificial seawater
 - (salinity 23-26 ppt, pH 8.0)
- 12:12 light cycle
- 900 PLs used for assay (60 PLs per treatment, 3 replicates per treatment)

Cadmium bioaccumulation & histological changes in SPF *L. vannamei* postlarvae (PL42)

Percent change of Cd levels in control and Cd-exposed SPF *L. vannamei* PL42

Methods for Objective 1:

• ESTs were isolated from cDNA libraries constructed using the cephalothorax of SPF, untreated *L. vannamei* postlarvae stage 42 (PL42) and Cd-treated (1ppm) postlarvae (Cd-PL42).

Objective 2 – Characterize the TE-like repeats in ALLERGEN genes

- Recombinant clones were sent to Amplicon Express, WA for cDNA library construction
- Agencourt, Inc. sequenced approx. 1500 clones from each library
- EST sequences were used for homology searches against Genbank database
- Bioinformatics: CENSOR and TEclass software
 - http://www.girinst.org/censor/index.php

RESULTS - Objective 1: Allergen genes in control and Cd-treated PL42

 There were no differences in the number of allergen genes isolated from control and Cdtreated cDNA libraries from cephalothorax

Objective 1. Gene Expression in Control and Cd-treated PL42

- 1. Differential gene expression analysis showed that 60.7% (622/1025) of ESTs from the control library were grouped into 381 UniGene entries whereas only 33.7% (379/1124) of ESTs from the Cd-treated library grouped into 162 UniGene entries.
- 2. Data suggest that a larger proportion of unique EST sequences (with no homology to any Genbank entry) were discovered in the Cd-treated library than in the control library.
- 3. It is possible that these unique sequences may relate to TE-induced genome rearrangements.

Transcriptomics study identified pathways associated with Cadmium exposure

- Oxidative phosphorylation
- Ubiquitin pathway
- Stress response
- Translational machinery
- Antimicrobials
- Antivirals Hemocyanin
- Cytoplasmic genes
- Metal binding
- Cuticle proteins
- Transposable elements-like, and re-arranged sequences**
- ESTs of unknown function

Summary Table	control PL42			Summary Table	Cd-tre
Repeat Class	Fragments	Length		Repeat Class	Fragm
Interspersed Repeat	6	532		Interspersed Repeat	
DNA transposon	174	12815		DNA transposon	
EnSpm	24	2523		EnSpm	
Helitron	47	2161		Helitron	
Kolobok	3	198		Kolobok	
Mariner/Tc1	11	1123		Mariner/Tc1	
MuDR	16	834		MuDR	
Р	7	826		Р	
Polinton	27	2268		Polinton	
Harbinger	1	84			
Sola	3	329		Sola	
Zator	1	77		Zator	
hAT	16	1160		hAT	
piggyBac	3	214		piggyBac	
				Transib	
Endogenous Retrovirus	26	2122		Endogenous Retrovirus	
ERV1	13	1286		ERV1	
ERV2	11	758		ERV2	
ERV3	1	46			
LTR Retrotransposon	59	5401		LTR Retrotransposon	
BEL	4	522		BEL	
Copia	10	633	Н	Copia	
DIRS	2	410		DIRS	
Gypsy	39	3446		Gypsy	
Non-LTR Retrotransposon	58	5817		Non-LTR Retrotransposon	
CR1	20	2041	Н	CR1	
Crack	2	170	Н	CRI	
L1	17	1731	Н	L1	
NeSL	1	231	Н	NeSL	
Penelope	3	203	Н	Penelope	
RTE	4	348	Н		
SINE	1	142	Н		
SINE2/tRNA	1	142	Н		
Tx1	5	531	Н	Tx1	
				I	
			Н	Jockey	
			Н	Outcast	
				R2	
			Г	Pseudogene	
				rRNA	
Repetitive Element	4	406	Г	Repetitive Element	
Simple Repeat	12	2370	_	Simple Repeat	
Satellite	11	1814		Satellite	
MSAT	8	1457	_	MSAT	
			-		

SAT

ated PL42

CENSOR analyses of ALL ESTs

1. Transposable Elements (TE)-like repeats varied in Control and Cd-treated PL42

2. increased

- 1. Ginger 2 DNA transposon
- 2. Copia LTR retrotransposon
- 3. Endogenous retrovirus (ERV2)
- 4. R2 non-LTR retrotransposon (inserts into 28s rRNA)*

3. decreased

- 1. EnSpm, MuDR, Polinton –all except Ginger 2
- 2. Gypsy, BEL
- 3. L1, CR1,

Organization of the ribosomal RNA (rRNA) genes in eukaryotes

rRNA genes are organized into tandemly repeated units as diagrammed at the top.

A typical unit is shown in expanded detail.

Development of EST-SSRs for mapping – work in progress

- Performed an in-depth review of all papers on linkage maps:
- 1 EST-SSR (Su233) that is homologous to the MLC sequences from Unigene cluster Lva. 1302 was mapped to LG7 (Alcivar-Warren et al. 2007)
- 1 SNP for Arginine kinase was reported (Ciobanu et al. 2010), but has not been mapped (Du et al. 2011).
- Work is underway to develop additional allergen EST-SSR markers using the vast number of ESTs available for all 4 allergens.

Summary

 The results provide baseline expression data on the potential effects of Cd on shrimp health and early growth, and suggest a complex interaction between environmental conditions and host genetic background, which should be further investigated under both laboratory and commercial conditions.

Acknowledgements

FUCOBI Foundation, Guayaquil, Ecuador

Environmental Genomics Inc., Southborough, MA USA

Biology Department, Boston College, Chestnut Hill, MA
 USA

